
1
CIS 422/522

CIS 422/522 ©S. Faulk 1

Designing the Module Structure
Standup reports
How do we design to arrive at the desired qualities?
Address Book exercise

CIS 422/522 ©S. Faulk 2

Architecture Design Process

Building architecture to address business goals:
1. Understand the goals for the system
2. Define the quality requirements
3. Design the architecture

1. Views: which architectural structures should we use?
(goals<->architectural structures<->representation)

2. Documentation: how do we communicate design decisions?
3. Design: how do we decompose the system?

4. Evaluate the architecture (is it a good design?)



2
CIS 422/522

CIS 422/522 ©S. Faulk 3

Notional Modules

Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Users

Creator

Contract

CIS 422/522 ©S. Faulk 4

Module Hierarchy
Problem

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

? relation

Leaf Modules = 
Work 

assignments



3
CIS 422/522

CIS 422/522 ©S. Faulk 5

Decomposition Strategies Differ

• How do we develop this structure so that the leaf 
modules make independent work assignments?

• Many ways to decompose hierarchically
– Functional: each module is a function
– Pipes and Filters: each module is a step in a chain of 

processing
– Transactional: data transforming components
– OOD: use case driven development

• Different approaches result in different kinds of 
dependencies

CIS 422/522 ©S. Faulk 6

Use Case Driven OO Process

• Address book design: in-class exercise
• Requirements 
• Problem Analysis

– Identify use cases from requirements
– Identify domain classes operationalizing use cases (apply 

heuristics)
• OO Design (refinement)

– Allocate responsibilities among classes
• CRC Cards (Class-Responsibility-Collaboration)

– Identify object interactions supporting use cases
• Sequence or Interaction Diagram for each scenario

– Identify supporting classes (& associations)
• Design Class Diagram, relations

• Detailed Design
– Design class interfaces (class attributes and services)



4
CIS 422/522

CIS 422/522 ©S. Faulk 7

Decomposition Heuristics

• Heuristics: suppose we create objects by …
– Underline the nouns
– Identify causal agents
– Identify coherent services
– Identify real-world items
– Identify physical devices
– Identify essential abstractions
– Identify transactions
– Identify persistent information
– Identify visual elements
– Identify control elements
– Execute scenarios

CIS 422/522 ©S. Faulk 8

Use Case Driven OO Process

• Address book design: in-class exercise
• Requirements 
• Problem Analysis

– Identify use cases from requirements
– Identify domain classes operationalizing 

use cases (apply heuristics)
• OO Design (refinement)

– Allocate responsibilities among classes
– Identify object interactions supporting use 

cases
– Identify supporting classes (& 

associations)
• Detailed Design

– Design class interfaces (class attributes 
and services)



5
CIS 422/522

CIS 422/522 ©S. Faulk 9

Address Book Design Exercise

• Is this a good design?
– Walk through the handout to understand how the 

design is derived
• Understand how use-case-driven OO design works

– Walk through the design’s class diagram and UML 
class specifications to understand the structure 
and function of the design

– Discuss the good and bad points of the design to 
arrive a team judgment

– Justify your answer: what is good about it (or bad) 
and why? What is the role of the MVC pattern?

CIS 422/522 ©S. Faulk 10

Lessons

• Without quality requirements there is no basis 
for choosing between designs
– i.e., we have no measure for “good”



6
CIS 422/522

CIS 422/522 ©S. Faulk 11

General OO Objectives

• Manage complexity
• Improve maintainability
• Improve stakeholder communication
• Improve productivity
• Improve reuse
• Provide unified development model 

(requirements to code)

CIS 422/522 ©S. Faulk 12

General OO Principles

• Principles provided to support goals
• Abstraction and Problem modeling

– Development in terms of problem domain
– Supports communication, productivity

• Generalization/Specialization (type of abstraction)
– Inheritance of shared attributes & Delayed Binding (polymorphism)
– Support for reuse, productivity

• Modularization and Information Hiding
– Supports maintainability, reuse

• Independence (abstract interfaces + IH)
– Classes designed as independent entities
– Supports readability, reuse, maintainability

• Common underlying model
– OO model for analysis, design, and programming
– Supports unified development



7
CIS 422/522

CIS 422/522 ©S. Faulk 13

Additional Design Goals

• Be easy to make the following kinds of change
– Add additional fields to the entries: for example, fields for 

someone's email, mobile phone, and business phone 
– Ability to edit the name fields at any time while keeping the 

associated data 
– As the number of entries gets larger, we will want to be able 

to search the address book
• Support subsets and extensions

– Produce a simpler version of the address book with only 
names and phone #

– Allow user to keep multiple address books of different kinds 
(i.e., different fields)

– Allow the user-defined fields
• Given these explicit and implicit goals, is it a good 

design?

CIS 422/522 ©S. Faulk 14

Exercise: Address Book OOD

• See the class handout
• Use our general OO objectives (implicit) and 

additional design goals
• Is this a good design with respect to those 

goals?
– What is good (or bad) about it?



8
CIS 422/522

CIS 422/522 ©S. Faulk 15

Questions?


